前言:
这篇文章主要是用来练习softmax regression在多分类器中的应用,关于该部分的理论知识已经在前面的博文中有所介绍。本次的实验内容是参考网页:。主要完成的是手写数字识别,采用的是MNIST手写数字数据库,其中训练样本有6万个,测试样本有1万个,且数字是0~9这10个。每个样本是一张小图片,大小为28*28的。
实验环境:matlab2012a
实验基础:
这次实验只用了softmax模型,也就是说没有隐含层,而只有输入层和输出层,因为实验中并没有提取出MINST样本的特征,而是直接用的原始像素特征。实验中主要是计算系统的损失函数和其偏导数,其计算公式如下所示:
一些matlab函数:
sparse:
生成一个稀疏矩阵,比如说sparse(A, B, k),,其中A和B是个向量,k是个常量。这里生成的稀疏矩阵的值都为参数k,稀疏矩阵位置值坐标点有A和B相应的位置点值构成。
full:
生成一个正常矩阵,一般都是利用稀疏矩阵来还原的。
实验错误:
按照作者给的starter code,结果连数据都加载不下来,出现如下错误提示:Error using permute Out of memory. Type HELP MEMORY for your options. 结果跟踪定位到loadMNISTImages.m文件中的images = permute(images,[2 1 3])这句代码,究其原因就是说images矩阵过大,在有限内存下不能够将其进行维度旋转变换。可是这个数据已经很小了,才几十兆而已,参考了很多out of memory的方法都不管用,后面直接把改句的前面一句代码images = reshape(images, numCols, numRows, numImages);改成images = reshape(images, numRows, numCols, numImages);反正实现的效果都是一样的。因为原因是内存问题,所以要么用64bit的matlab,要买自己对该函数去优化下,节省运行过程中的内存。
实验结果:
Accuracy: 92.640%
和网页教程中给的结果非常相近了。
实验主要部分代码:
softmaxExercise.m:
%% CS294A/CS294W Softmax Exercise % Instructions% ------------% % This file contains code that helps you get started on the% softmax exercise. You will need to write the softmax cost function % in softmaxCost.m and the softmax prediction function in softmaxPred.m. % For this exercise, you will not need to change any code in this file,% or any other files other than those mentioned above.% (However, you may be required to do so in later exercises)%%======================================================================%% STEP 0: Initialise constants and parameters%% Here we define and initialise some constants which allow your code% to be used more generally on any arbitrary input. % We also initialise some parameters used for tuning the model.inputSize = 28 * 28; % Size of input vector (MNIST images are 28x28)numClasses = 10; % Number of classes (MNIST images fall into 10 classes)lambda = 1e-4; % Weight decay parameter%%======================================================================%% STEP 1: Load data%% In this section, we load the input and output data.% For softmax regression on MNIST pixels, % the input data is the images, and % the output data is the labels.%% Change the filenames if you've saved the files under different names% On some platforms, the files might be saved as % train-images.idx3-ubyte / train-labels.idx1-ubyteimages = loadMNISTImages('train-images.idx3-ubyte');labels = loadMNISTLabels('train-labels.idx1-ubyte');labels(labels==0) = 10; % Remap 0 to 10inputData = images;% For debugging purposes, you may wish to reduce the size of the input data% in order to speed up gradient checking. % Here, we create synthetic dataset using random data for testing% DEBUG = true; % Set DEBUG to true when debugging.DEBUG = false;if DEBUG inputSize = 8; inputData = randn(8, 100); labels = randi(10, 100, 1);end% Randomly initialise thetatheta = 0.005 * randn(numClasses * inputSize, 1);%输入的是一个列向量%%======================================================================%% STEP 2: Implement softmaxCost%% Implement softmaxCost in softmaxCost.m. [cost, grad] = softmaxCost(theta, numClasses, inputSize, lambda, inputData, labels); %%======================================================================%% STEP 3: Gradient checking%% As with any learning algorithm, you should always check that your% gradients are correct before learning the parameters.% if DEBUG numGrad = computeNumericalGradient( @(x) softmaxCost(x, numClasses, ... inputSize, lambda, inputData, labels), theta); % Use this to visually compare the gradients side by side disp([numGrad grad]); % Compare numerically computed gradients with those computed analytically diff = norm(numGrad-grad)/norm(numGrad+grad); disp(diff); % The difference should be small. % In our implementation, these values are usually less than 1e-7. % When your gradients are correct, congratulations!end%%======================================================================%% STEP 4: Learning parameters%% Once you have verified that your gradients are correct, % you can start training your softmax regression code using softmaxTrain% (which uses minFunc).options.maxIter = 100;%softmaxModel其实只是一个结构体,里面包含了学习到的最优参数以及输入尺寸大小和类别个数信息softmaxModel = softmaxTrain(inputSize, numClasses, lambda, ... inputData, labels, options); % Although we only use 100 iterations here to train a classifier for the % MNIST data set, in practice, training for more iterations is usually% beneficial.%%======================================================================%% STEP 5: Testing%% You should now test your model against the test images.% To do this, you will first need to write softmaxPredict% (in softmaxPredict.m), which should return predictions% given a softmax model and the input data.images = loadMNISTImages('t10k-images.idx3-ubyte');labels = loadMNISTLabels('t10k-labels.idx1-ubyte');labels(labels==0) = 10; % Remap 0 to 10inputData = images;size(softmaxModel.optTheta)size(inputData)% You will have to implement softmaxPredict in softmaxPredict.m[pred] = softmaxPredict(softmaxModel, inputData);acc = mean(labels(:) == pred(:));fprintf('Accuracy: %0.3f%%\n', acc * 100);% Accuracy is the proportion of correctly classified images% After 100 iterations, the results for our implementation were:%% Accuracy: 92.200%%% If your values are too low (accuracy less than 0.91), you should check % your code for errors, and make sure you are training on the % entire data set of 60000 28x28 training images % (unless you modified the loading code, this should be the case)
softmaxCost.m
function [cost, grad] = softmaxCost(theta, numClasses, inputSize, lambda, data, labels)% numClasses - the number of classes % inputSize - the size N of the input vector% lambda - weight decay parameter% data - the N x M input matrix, where each column data(:, i) corresponds to% a single test set% labels - an M x 1 matrix containing the labels corresponding for the input data%% Unroll the parameters from thetatheta = reshape(theta, numClasses, inputSize);%将输入的参数列向量变成一个矩阵numCases = size(data, 2);%输入样本的个数groundTruth = full(sparse(labels, 1:numCases, 1));%这里sparse是生成一个稀疏矩阵,该矩阵中的值都是第三个值1 %稀疏矩阵的小标由labels和1:numCases对应值构成cost = 0;thetagrad = zeros(numClasses, inputSize);%% ---------- YOUR CODE HERE --------------------------------------% Instructions: Compute the cost and gradient for softmax regression.% You need to compute thetagrad and cost.% The groundTruth matrix might come in handy.M = bsxfun(@minus,theta*data,max(theta*data, [], 1));M = exp(M);p = bsxfun(@rdivide, M, sum(M));cost = -1/numCases * groundTruth(:)' * log(p(:)) + lambda/2 * sum(theta(:) .^ 2);thetagrad = -1/numCases * (groundTruth - p) * data' + lambda * theta;% ------------------------------------------------------------------% Unroll the gradient matrices into a vector for minFuncgrad = [thetagrad(:)];end
softmaxTrain.m:
function [softmaxModel] = softmaxTrain(inputSize, numClasses, lambda, inputData, labels, options)%softmaxTrain Train a softmax model with the given parameters on the given% data. Returns softmaxOptTheta, a vector containing the trained parameters% for the model.%% inputSize: the size of an input vector x^(i)% numClasses: the number of classes % lambda: weight decay parameter% inputData: an N by M matrix containing the input data, such that% inputData(:, c) is the cth input% labels: M by 1 matrix containing the class labels for the% corresponding inputs. labels(c) is the class label for% the cth input% options (optional): options% options.maxIter: number of iterations to train forif ~exist('options', 'var') options = struct;endif ~isfield(options, 'maxIter') options.maxIter = 400;end% initialize parameterstheta = 0.005 * randn(numClasses * inputSize, 1);% Use minFunc to minimize the functionaddpath minFunc/options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost % function. Generally, for minFunc to work, you % need a function pointer with two outputs: the % function value and the gradient. In our problem, % softmaxCost.m satisfies this.minFuncOptions.display = 'on';[softmaxOptTheta, cost] = minFunc( @(p) softmaxCost(p, ... numClasses, inputSize, lambda, ... inputData, labels), ... theta, options);% Fold softmaxOptTheta into a nicer formatsoftmaxModel.optTheta = reshape(softmaxOptTheta, numClasses, inputSize);softmaxModel.inputSize = inputSize;softmaxModel.numClasses = numClasses; end
softmaxPredict.m:
function [pred] = softmaxPredict(softmaxModel, data)% softmaxModel - model trained using softmaxTrain% data - the N x M input matrix, where each column data(:, i) corresponds to% a single test set%% Your code should produce the prediction matrix % pred, where pred(i) is argmax_c P(y(c) | x(i)). % Unroll the parameters from thetatheta = softmaxModel.optTheta; % this provides a numClasses x inputSize matrixpred = zeros(1, size(data, 2));%% ---------- YOUR CODE HERE --------------------------------------% Instructions: Compute pred using theta assuming that the labels start % from 1.[nop, pred] = max(theta * data);% pred= max(peed_temp);% ---------------------------------------------------------------------end
参考资料: